Workshop 1: Aquatic corridors

Coordinated by Leopold Füreder

Andrea Bou-Vinals

(Univ. Innsbruck) presented tools for the analysis of connectivity in riverine landscapes, preliminary analysis from Tyrol.

Céline Le Pichon (Antony Cemagref) demonstrated the applications of landscapeecology tools in watercourses for fish evaluating "spatially continuity and riverscape heterogeneity".

Yves Souchon (Lyon Cemagref) presented the different geomatics techniques used to characterize the river corridors (riparian forests) at different scales.

Pascal Roche (ONEMA, France)

raised questions related to the "blue network" and the longitudinal continuity of streams.

Within this background, the aquatic break-out group will discuss existing knowledge and gaps in

- the identification of barriers being effective in the longitudinal, lateral, vertical and temporal dimensions of river systems,
 - Agreement on importance of 4-dimensions, ideal model understand structural and functional elements of riverine ecosystems (including aquatic, riparian and catchment elements)
 - Chemical barriers, temperature, sediment clogging

University of Innsbruck, Institute of Ecology

L. FÜREDER

Within this background, the aquatic break-out group will discuss existing knowledge and gaps in

- 1. the identification of barriers being effective in the longitudinal, lateral, vertical and temporal dimensions of river systems,
- 2. the identification of typical habitats and typical riverine species (brown trout, grayling, bullhead, tamarisk, bird, amphibian and invertebrate species,...),
- Difficulty to define typical habitats, esp. aquatics (microhabitats)
- To general, needs detailed definitions, physical/spatial and functional aspects
- Blue Green Veins; aquatic terrestrial habitats
- Species or species-groups
- Functional guilds

Within this background, the aquatic break-out group will discuss existing knowledge and gaps in

- 1. the identification of barriers being effective in the longitudinal, lateral, vertical and temporal dimensions of river systems,
- 2. the identification of typical habitats and typical riverine species (brown trout, grayling, bullhead, tamarisk, bird, amphibian and invertebrate species,...),
- 3. the data availability in the Alps and other mountain regions (within the frame of the implementation of the European-WFD, Natura 2000, fauna-flora-habitat directive)
- 6. the communication (transfer and exchange of knowledge) with watershed managers and governmental authorities
- WFD data expected from all Alpine states, delay in F, I, CH equivalent data
- Contact at various levels (EU, national, regional)
- Species/habitat data at Natura 2000 sites
- Difficulty to receive data intercallibration unit

Within this background, the aquatic break-out group will discuss existing knowledge and gaps in

- 1. the identification of barriers being effective in the longitudinal, lateral, vertical and temporal dimensions of river systems,
- 2. the identification of typical habitats and typical riverine species (brown trout, grayling, bullhead, tamarisk, bird, amphibian and invertebrate species,...),
- 3. the data availability in the Alps and other mountain regions (within the frame of the implementation of the European-WFD, Natura 2000, fauna-flora-habitat directive)
- 4. the identifications of methods for analysis and modelling (indicators, technical questions,...)
- Longer discussion on efficiency in the aquatic system (spatial, temporal,...), gaps in availability
- Functional indicators (guilds, biological/ecological traits)
- On regional level: contact to authorities, water managers

University of Innsbruck, Institute of Ecology

L. FUREDER

L. FÜREDER

6

Workshop 1: Aquatic corridors – Introduction

Within this background, the aquatic break-out group will discuss existing knowledge and gaps in

- 1. the identification of barriers being effective in the longitudinal, lateral, vertical and temporal dimensions of river systems,
- 2. the identification of typical habitats and typical riverine species (brown trout, grayling, bullhead, tamarisk, bird, amphibian and invertebrate species,...),
- 3. the data availability in the Alps and other mountain regions (within the frame of the implementation of the European-WFD, Natura 2000, fauna-flora-habitat directive)
- 4. the identifications of methods for analysis and modelling (indicators, technical questions,...)
- 5. analysis of the potential to increase connectivity and decrease barrier effects and fragmentation
- Example from Isere, all-level engagement, individual initiatives

University of Innsbruck, Institute of Ecology

Hauer & Lamberti (2007)

4-dimensional nature of river ecosystems

Running water systems are dynamic systems with <u>spatial</u> (1) longitudinal, (2) lateral, (3) vertical and (4) <u>temporal</u> dimensions. Depending on the landscape settings these dimensions are of variable/shifting importance. Anthropogenic impacts disrub the patterns and processes (modified after Stanford, 1998).

Riverine landscapes

Riverine landscapes are complex systems with a specific role in connecting aquatic and terrestrial habitats and consequently functioning themselves as habitats, dispersal and migration routs, corridors but also barriers for animals and plants.

In densely populated areas of the Alps and especially in areas surrounding protected areas riverine landscapes were altered intensively, therefore these important features as corridors were degraded in various ways.

Riverine landscapes and connectivity

- Alpine riverine landscapes (rivers, floodplain area, and catchments) have a key role in the ecological connectivity
 Analysis of habitat conditions and degradations and (migration) barriers.
- The decrease of longitudinal and lateral connectivity, habitat fragmentaion due to hydropower development, river engineering and flow alterations will be assessed using GIS-methods.

L. FÜREDER

University of Innsbruck, Institute of Ecology

Within this background, the aquatic break-out group will discuss existing knowledge and gaps in

- 1. the identification of barriers being effective in the longitudinal, lateral, vertical and temporal dimensions of river systems,
- 2. the identification of typical habitats and typical riverine species (brown trout, grayling, bullhead, tamarisk, bird, amphibian and invertebrate species,...),
- the data availability in the Alps and other mountain regions (within the frame of the implementation of the European-WFD, Natura 2000, fauna-flora-habitat directive)
- 4. the identifications of methods for analysis and modelling (indicators, technical questions,...)
- 5. analysis of the potential to increase connectivity and decrease barrier effects and fragmentation
- 6. the communication (transfer and exchange of knowledge) with watershed managers and governmental authorities

L. FÜREDER University of Innsbruck, Institute of Ecology

Projekt: Checkliste für Kleinkraftwerke aus naturschutzfachlicher Sicht. Im Auftrag der Tiroler Landesregierung, Abt. Umweltschutz

Potentieller und realisierter Migrationsraum

- Natürlicher Migrationsraum
- Migrationsbarrieren 1. Ordnung
- Migrationsraum 1. Ordnung
- Migrationsbarrieren 2. Ordnung
- Migrationsraum 2. Ordnung

Diplomarbeit: R. Schwarzenberger

L. FÜREDER

Mammalia	Cervus elaphus	Rothirsch
	Lutra lutra	Fischotter
	Myotis daubentonii	Wasserfledermaus
	Neomys anomalus	Sumpfspitzmaus
	Neomys fodiens	Wasserspitzmaus
Pisces	Chondrostoma nasus	Nase, Näsling
	Phoxinus phoxinus	Elritze, Pfrille
	Salmo salar	Lachs
	Salmo trutta fario	Bachforelle
	Thymallus thymallus	Äsche
	Salvelinus alpinus salvelinus (L.)	Seesaibling
	Cottus gobio	Groppe, Koppe
	Barbus barbus	Barbe
Reptilia	Natrix natrix	Ringelnatter
	Emys orbicularis	Europäische Sumpfschildkröte
Amphibia	Bombina variegata	Gelbbauchunke
	Bufo bufo	Erdkröte
	Hyla arborea	Laubfrosch
	Rana temporaria	Grasfrosch
	Triturus alpestris	Bergmolch
	Triturus vulgaris	Teichmolch

University of Innsbruck, Institute of Ecology

16

Charadrius dubius Actitis hypoleucos Ardea cinerea Alcedo atthis Cinclus cinclus Motacilla alba Motacilla cinerea Acrocephalus palustris Acrocephalus schoenobaenus Crustacea Austropotamobius pallipes Astacus astacus Austropotamobius torrentium Insecta Carabus clathratus Aeshna caerulea Cordulegaster boltonii

Flussregenpfeifer Flussuferläufer Graureiher Eisvogel Wasseramsel **Bachstelze** Gebirgsstelze Sumpfrohrsänger Schilfrohrsänger Dohlenkrebs Edelkrebs **Steinkrebs** Ufer-Laufkäfer Alpen-Mosaikjungfer Zweigestreift. Quelljungfer Map of potential barriers River Ziller, Tyrol, Austria

Fragmentation of Riverine Landscapes - Lech, Ziller/Tyrol effective mesh-size (km²)

Ri∨er Lech

Lech

Area riverine landscape (km²)	6,24
Number of Habitat types	5
Number of Patches	13
Class Area	3,62
coverage (%)	57,95
Streets (km)	46
Division Index (%)	49
eff. Mesh-size (km²)	1,85

River Ziller

Ziller	
Area riverine landscape (km²)	6,05
Number of Habitat types	3
Number of Patches	9
Class Area	0,15
coverage (%)	2,50
Streets (km)	94
Division Index (%)	82
eff. Mesh-size (km²)	0,03

riverine landscape (Buffer 100m)

data source: Tiris, Corine landcover Level3 author: andrea.bou-vinals@uibk.ac.at

Aquatic corridors - presentations

Pascal Roche (ONEMA, France)

will raise questions related to the "blue network" and the longitudinal continuity of streams.

Yves Souchon

(Lyon Cemagref)

will present the different geomatics techniques used to characterize the river corridors (riparian forests) at different scales.

Céline Le Pichon (Antony Cemagref)

will describe the tools adapted to landscape ecology and applied to watercourses considered to be "spatially continuous and heterogenous riverscapes".

Andrea Bou-Vinals

(Univ. Innsbruck)

will present tools for the analysis of connectivity in riverine landscapes.